

*International Journal
of
Medical Anesthesiology*

E-ISSN: 2664-3774
P-ISSN: 2664-3766
Impact Factor (RJIF): 5.66
www.anesthesiologypaper.com
IJMA 2026; 9(1): 01-02
Received: 01-10-2025
Accepted: 05-11-2025

Dr. Syeeda Manahil
Senior Resident, Department of Anaesthesiology & Critical Care Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India

Dr. Fauzia Shifaat
Associate Professor, Department of Anaesthesiology & Critical Care Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India

Dr. Sagar Ishaq
Postgraduate Scholar, Department of Anaesthesiology & Critical Care Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India

Perioperative bronchospasm during rigid bronchoscopy in an infant with ventricular septal defect: A case report

Syeeda Manahil, Fauzia Shifaat and Sagar Ishaq

DOI: <https://www.doi.org/10.33545/26643766.2025.v9.i1a.625>

Abstract

Foreign body aspiration is a frequent pediatric emergency requiring urgent airway intervention. Rigid bronchoscopy under general anesthesia is the gold standard for management. However, it may be complicated by perioperative bronchospasm, particularly in infants with airway inflammation and hyperactivity. We report an 11-month-old infant with a small ventricular septal defect (VSD) who developed severe bronchospasm and acute desaturation during rigid bronchoscopy for foreign body removal, successfully managed with prompt airway control and multimodal bronchodilator therapy.

Keywords: Rigid bronchoscopy, pediatric anesthesia, foreign body aspiration, bronchodilator therapy

Introduction

Foreign body aspiration accounts for significant morbidity and mortality in infants and young children [1, 3]. Rigid bronchoscopy remains the definitive diagnostic and therapeutic modality for airway foreign bodies [1]. Airway manipulation, recent aspiration, and inflammation predispose pediatric patients to perioperative bronchospasm [2, 5]. The presence of congenital heart disease, even when hemodynamically insignificant, may further reduce cardiopulmonary reserve and exacerbate hypoxemia during acute airway events [4].

Case Presentation

An 11-month-old female infant weighing 7 kg presented with a history of foreign body inhalation one day prior to admission. The parents reported an acute choking episode followed by persistent cough and respiratory distress.

On examination, the child had decreased air entry on the right side.

Preoperative oxygen saturation was 94% on room air.

The child was a known case of congenital heart disease, diagnosed at 3 months of age with Echocardiography showing a small perimembranous ventricular septal defect measuring 2.5 mm with left-to-right shunt with left atrial and left ventricular dilatation, for which diuretics were initiated at 7 months of age and stopped 10 days prior to surgery as the child was clinically asymptomatic from a cardiac standpoint, with no history of failure to thrive or recurrent respiratory infections.

A repeat echocardiogram on the day of surgery showed a small VSD with insignificant shunt and normal chamber dimensions.

Anesthetic Management

Standard ASA monitoring was applied. Adequate fasting hours were ensured. Premedication with

Inj: Glycopyrrolate 70 µg

Inj: Dexamethasone 1 mg

General anesthesia was induced with

Inj. Etomidate 4 mg, in incremental doses to achieve adequate depth of anesthesia

A low dose of Inj. Propofol (10 mg), to blunt sympathetic response

Inj. fentanyl 5 µg, and Inj. Atracurium 4.5 mg.

Corresponding Author:

Dr. Syeeda Manahil

Senior Resident, Department of Anaesthesiology & Critical Care Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India

Etomidate was chosen due to its cardiovascular stability in children with congenital heart disease.

The patient was preoxygenated with 100% oxygen via face mask. Intermittent positive-pressure ventilation was continued until complete neuromuscular paralysis was achieved. High-flow nasal cannula oxygen was employed for apneic oxygenation. The patient was then handed over to the otolaryngology team for rigid bronchoscopy, during which intermittent positive-pressure ventilation was maintained through the side port of the bronchoscope as part of a shared-airway technique. Depth of Anesthesia was maintained using sevoflurane.

Intraoperative Complication

Following airway manipulation for rigid bronchoscopy, the patient developed severe bronchospasm with rapid desaturation to 65%. The procedure was abandoned, and the child was intubated and ventilated with 100% oxygen. Bronchospasm during rigid bronchoscopy is a known complication in pediatric patients, particularly following recent foreign body aspiration [2, 5].

Management included

Inhaled salbutamol and budesonide via the endotracheal tube.

Intravenous Inj. Deriphylline 12mg diluted in 6 ml NS over 10 min

Inj. dexamethasone 2 mg repeated

Inj. hydrocortisone 50 mg- to help mitigate underlying airway inflammation and edema.

Gradual improvement in airway compliance and oxygenation was observed, with oxygen saturation improving to 97% [2, 6].

After stabilization and resolution of bronchospasm, the trachea was extubated, and the patient was handed over to the otolaryngology team for reattempted bronchoscopy. Rigid bronchoscopy was subsequently reattempted. The foreign body was identified as a piece of chicken bone lodged at the carina and abutting the right main bronchus. Retrieval resulted in minor tracheal mucosal trauma, which was managed with adrenaline-soaked cotton pledges, achieving adequate hemostasis.

Postoperative Course

Following completion of rigid bronchoscopy, a supraglottic airway device was placed and maintained until full reversal of neuromuscular blockade was achieved. The device was removed uneventfully in the operating room. The patient was closely monitored until she was fully conscious, alert, and active. Nebulization with budesonide was administered postoperatively to reduce airway inflammation. No further episodes of bronchospasm or respiratory compromise were observed. The postoperative recovery was uneventful, and the patient was discharged after 48 hours of observation. At the first follow-up visit one week later, the patient remained asymptomatic with no respiratory complaints.

Conclusion

This case highlights the importance of anticipating bronchospasm during rigid bronchoscopy in infants with recent foreign body aspiration. The presence of congenital heart disease may further compromise physiological reserve and result in rapid desaturation in rigid bronchoscopy. Early

recognition, prompt airway control, and multimodal bronchodilator therapy are crucial for favorable outcomes.

Conflict of Interest: Nil

Funding: Nil

References

1. Fidkowski CW, Zheng H, Firth PG. The anesthetic considerations of tracheobronchial foreign bodies in children: A literature review of 12,979 cases. *Anesthesia and Analgesia*. 2010;111(4):1016–1025.
2. Kim IA, Shapiro JM. Anesthesia for rigid bronchoscopy in children. *Paediatric Anaesthesia*. 2019;29(7):687–693.
3. Tan HK, Brown K, McGill T, *et al*. Airway foreign bodies: A 10-year review. *International Journal of Pediatric Otorhinolaryngology*. 2000;56(2):91–99.
4. Litman RS, Berger JS, Chhibber A. Anesthetic management of children with congenital heart disease undergoing noncardiac surgery. *Anesthesia and Analgesia*. 2014;119(3):611–624.
5. Olsson GL, Hallen B. Bronchospasm during anesthesia: A computer-aided incidence study of 136,929 patients. *Acta Anaesthesiologica Scandinavica*. 1984;28(5):567–575.
6. Newth CJL, Meert KL, Clark AE, *et al*. Management of severe bronchospasm in infants and children. *Pediatric Critical Care Medicine*. 2016;17(3):e113–e121.

How to Cite This Article

Manahil S, Shifaat F, Ishaq S. Perioperative bronchospasm during rigid bronchoscopy in an infant with ventricular septal defect: a case report. *Int J Med Anesthesiol*. 2026;9(1):01-02.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.